

Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides

Verifie Purple bacterial RCs on bare gold 25 С 20 quinone current (nA) 1 51 vrije Universiteit amsterdam den Hollander, M.-J., Magis, J.G., Fuchsenberger, P., Aartsma, T.J., Jones, M.R. and Frese R.N. (2011) 10 25 30 Enhanced photocurrent generation time (s) by photosynthetic bacterial reaction centers through molecular Wavelength (nm) а relays, light-harvesting complexes 700 800 900 and direct protein-gold (n.e) reference 2.0 light electrode interactions. on off Langmuir 27, 10282-10294 current current (nA) readout potential time (s) V 1.0 University of BRISTOL 0.5 buffer 0.0 gold 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 electrode ∆t(s) University of BRISTOL

Kechanism of current generation

Kerbicides – Q_B site inhibitors

W Biosensing through RC kinetics

 $P^+Q_A^-$ charge recombination – lifetime ~100 ms

Photocurrents as a signal for biosensing?

Ke Optimum quinone concentration

Kerbicides from different classes

Ke Strong and weak Q_B inhibitors

Fruiting bodies of the myxobacterium Stigmatella aurantiaca

Ke Strong and weak Q_B inhibitors

Fruiting bodies of the myxobacterium Stigmatella aurantiaca

Carolina Reaper chilli pepper Average 1,569,300 units on the Scoville heat scale

Kernet Photocurrents sensitive to triazine herbicides

Kecombination accelerated by triazines

Kervent attenuation is concentration dependent

Kervent attenuation is concentration dependent

Kensitivity to triazine herbicides

Table 1

Sensitivity of photocurrent generation to effective Q_B inhibitors.

	Inhibitor	IC_{50}^{a} (nM)	Calculated K_i^b (nM)	LOD ^c (nM)
·	Atrazine	2100 ± 100	1200	49
	Terbutryn	208 ± 10	123	8.3
	Stigmatellin	280 ± 60	165	10
pbRC – IC ₅₀ of 750-3000 nM and LOD of 40-170 nM				
PSII – IC ₅₀ of 50-900 nM and LOD of 1-2 nM				
Maximum permitted concentration in EU drinking water 2 nM				

Ke Advantages and disadvantages over PSII

Advantages

Selectivity for triazines Reasonable stability Amenable to mutation

Disadvantages

Lower sensitivity

Keeking sensitivity but saving selectivity

Advantages

Selectivity for triazines Reasonable stability Amenable to mutation

> **Disadvantages** Lower sensitivity

Verify Purple bacterial RCs as a herbicide biosensor

Biosensors and Bioelectronics 58 (2014) 172-178

Contents lists available at ScienceDirect

Biosensors and Bioelectronics

journal homepage: www.elsevier.com/locate/bios

Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides

David J.K. Swainsbury^{a,1}, Vincent M. Friebe^{b,1}, Raoul N. Frese^{b,*}, Michael R. Jones^{a,**}

^a School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom ^b Division of Physics and Astronomy, Department of Biophysics, VII University Amsterdam, De Boelelaan 1081, Amsterdam, 1081, HV, The Ne

^b Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands

David Swainsbury Rob Harniman

Vincent Friebe Raoul Frese

COSETD1102

PHOTOTECH: BIOSENSORS & BIOCHIPS

